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Abstract 

Interest in this work was prompted by the potential advantages of the use of Compton 

scattering tomography, CST method over X-ray computed tomography, CT. The CST method 

can image directly the electron density of materials using transmitted scattered photons rather 

than attenuation coefficients as in the case of CT, also the detector does not have to be on 

opposite sides of the source and object as is required in CT technique. This flexibility is very 

useful when images of objects buried under the ground are desired. Imaging of the electron 

density distribution of materials by recording the number of scattered photons as a function of 

energy and detector position was carried out. From the image reconstruction formula, a 

computer program written in C++ language was developed to generate the electron density 

function of the point scatterer. From this generated data, phantom images were obtained by 

plotting the electron density function at varying scattering circles radii versus the scattering 

angle using Microsoft Excel. Observation of these images reveals that at scattering circle 

radii of about 10cm, better image details emerged. The implication of this should lead to the 

realization of the optimal positioning of the CST system for real-time scan situations. This 

preliminary step towards the real-time development of the CST system as reported in this 

work should open the gate for new and better possibilities in tomographic methods.  

Keywords: Compton Scattering Tomography, CST; Image Reconstruction; Electron Density;  

                   Attenuation; Line Integrals. 

 

1. Introduction 

 

In the -ray energy regime from about 0.1 to 1.0 MeV, and for materials with low to 

intermediate atomic numbers, the dominant interaction mechanism in matter is Compton 

scattering. Early pioneers of the use of Compton scattering in imaging applications include 

Lale (1959), Clarke et al. (1976), and in 1971, Farmer and Collins made use of the energy 

spectrum of scattered gamma radiation measured by a germanium detector. Wang et 

al.,(1999), presented an improved form of the detector response function and validated the 

transform method proposed by Norton for the Compton scattering image 

reconstruction.Cebeiro et al., (2017) showed that the standard CST can be ’improved’ in some 

particular sense by ’doubling’ the scanning mechanism. Adejumo et al., (2011) opined that 

CST techniques can be applied in soil studies. The attraction of Compton Scattering Imaging, 

CSI lies in its ability to image directly the electron density distribution of materials rather than 
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the attenuation coefficients of transmitted photons as is the case with computed tomography, 

CT; as well as the flexibility it offers in the positioning of its detector, which does not have to 

be on opposite sides of the source as is required in transmission imaging. These give the CSI 

method potential advantages over X-ray transmission CT, especially when images of objects 

buried under the ground are concerned. In general, CT is the task of reconstructing an 

unknown function from measurements of its line integrals, and in X-ray transmission CT, this 

unknown function is the distribution of the linear attenuation coefficient. Compton Scattering 

Tomography, CST, is a form of tomography in which the unknown function is the local 

Compton Scattering cross-section. This quantity which is spatially varying (depending on the 

material’s mass density and composition) is related to the local electron density of the 

material. Unlike the case of X-ray transmission CT, where the tomographic problem is 

characterized by line integrals defined along a set of overlapping straight lines joining 

multiple source and detector points, the CST problem of a system under consideration is 

characterized by line integrals measured over circular paths. Norton, in 1994 showed that 

neglecting photoelectric absorption, for a -ray of known energy, emitted unto an object from 

a source point S, Compton scattered once, and detected at a point D outside the object, to a 

very good approximation, the energy loss suffered by the photon upon scattering is a function 

only of the scattering angle  subtended by the points S and D. When scattering is confined to 

a plane, the locus of scattering points having the same emitting point S, detecting point D and 

scattering angle , or, equivalently, recorded energy, E and can be shown to be a circle 

whose centre and radius is uniquely determined by the three parameters S, D and  (or 

energy E ) (Norton, 1994). When point S is an omnidirectional source of  -rays, the number 

of Compton scattered photons recorded at D with particular energy E  is a (weighted) line 

integral of the electron density over this circular path. Norton, further showed that in the CST 

method, a complete set of path integral measurements, generated by recording the scattered 

photons as a function of energy and detector position, is sufficient to recover the unknown 

electron density. In the ideal case, where (i) perfect energy and spatial resolution of the 

detector is assumed; (ii) noise and multiple scattering is neglected; and (iii) insignificant 

attenuation along the path between the source and scattering point and from that point to the 

site of the detector is also assumed, the problem is analytically tractable and has an exact 

solution (Norton, 1994). In the CST problem, departures from the ideal case occur as a result 

of (i) imposition of limits by the finite energy and spatial resolution of a real detector; (ii) 

incidence of multiple scattering, which may be arbitrarily reduced by collimating source and 

detector to one plane; reducing out-of-plane scatter. This is attainable at the expense of a 

reduction in counting statistics, which increases data acquisition time, and results in an 

increase in radiation exposure of the sample. This is undesirable, as it is not in line with the 

ALARA (As Low AsReasonably Achievable) principle of radiation protection in industrial 

applications. A more significant departure from the ideal is the assumption of negligible 

attenuation due to Compton scattering along the source-scatterer-detector paths. Hence, in a 

real situation, the detected scattered signal is modulated by the attenuation factors of pre- and 

post-scattered radiation. Arendtsz and Hussein, in 1995 opined that these factors are a 

function of the unknown density of the object, which one is trying to obtain by imaging. 

 

2. Methodology 

  

Mathematical Formulation 

 

The CST problem is characterized by the measurements of line integrals over circular paths 

whose origin can be traced to the locus of points in the X-Y plane from which the source S 
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and detector D subtend the same scattering angle . This locus of points is a circle passing 

through the source and detector (Norton, 1994).Norton inthis work in 1994, derived the 

equation of the scattering circle (after rigorous mathematical manipulations) as: 
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where    is the 1-D Dirac delta function 

R is the radius of the scattering circle 
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prf , is electron density denoted in polar coordinates 

  ,;, Rr p is the weighting factor for an ideal situation (when attenuation is ignored) 

Kouris et al., in 1982 had shown that in  -ray emission tomography, the problem of 

attenuation is more complicated because the integral of the linear attenuation coefficient 

depends on the distance between the point of emission along the line and the detector.   

Norton began the approximate treatment of attenuation by considering the general case in 

which the weighting function,  is not factorable, i.e., when 

      ,,,;, 21 RrRr pp  and after incorporating the question of attenuation into 

the weighting function and much rigorous mathematical manipulations finally obtained the 

equation for the image of a point scatterer at  
00 , pr   embedded in a uniformly attenuating 

medium with constant attenuation coefficient, as 
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pa rf , is the object function (point scatterer to be imaged). 

Equation 2 above gives the image of the point scatterer at  
00 , pr   embedded in a uniformly 

attenuating medium with constant attenuation coefficient,   


1 is the meanfree path length of a  -ray in the attenuating medium. 

 

Compton ScatteringImage Reconstruction Algorithm 

 

The equation of the image of a point scatterer, (Eqn 2 above) was first numerically integrated 

at different values of  . Values of 0/2 r  and 0/4 r  were used in developing the image 

reconstruction algorithm.  

Image Reconstruction Algorithm 

 

Step 

1. Start 

2. Set pi      1 

3. Set i         0 

4. theta        pi * i 

5. phi(i)          90 – theta 

6. increment i by 10 
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7. if i <= 180 goto step 4 

8. Set j    1 

9. Set y   1 

10. R  y/10 

11. r0(j)      2*R*cos(theta – phi(y)) 

12. mu(j)        2/r0(j) 

13. a(j)         (-mu(j)*r0(j)*(sin(80)-sin(10))/cos(80-phi(y))) 

14. expa(j)         exp(a(j)) 

15. Rexpa(j)       R*expa(j) 

16. h(j)      exp(sin(12.5/r0(j))*12.5/r0(j)) 

17. Increase y by 1 

18. If y<= 150 then goto step 10 

19. Set k = 2 

20. x         k-1 

21. Set thetap = 0 

22. d(x)            r0(1)*(cos(thetap-phil(x))/cos(80-phi(x))) 

23. Increase thetap by 10 

24. If thetap<= 180 then goto step 22 

25. b(x)            (r0(k)- d(x) ) * ( 1/pow(cos(10-phil(x)),2))*h(k) 

26. Increase k by 1 

27. If k <= 20 goto step 20 

28. R      1 

29. j      1  

30. Display heading 

31. Set f(j) = R*Rexpa(j)*b(j) 

32. Display f(j) and phi(j) 

33. Incease j by 1 

34. If j <= 20 goto step 31 

35. Increase R by 1 

36. If R <= 15 goto step29 

37. Stop 

 

3. Results 

 

The images of a phantom at scattering circle radii of between 10 and 20cm are shown in 

Figures 1 to 6 below.  
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Fig. 1 Image of a Phantom at scattering circle radius, 5cm 

 

 
 

Fig. 2 Image of a Phantom at scattering circle radius, 10cm 

 

IJSER

http://www.ijser.org/


International Journal of Scientific & Engineering Research Volume 10, Issue 10, October-2019                                                       590 
ISSN 2229-5518  

IJSER © 2019 

http://www.ijser.org 

 
 

Fig. 3 Image of a Phantom at scattering circle radius, 12cm 

 

 
 

Fig. 4 Image of a Phantom at scattering circle radius, 13cm 
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Fig. 5 Image of a Phantom at scattering circle radius 15cm 

 

 
 

Fig. 6 Image of a Phantom at scattering circle radius 20cm 

 

For real-time situations, the scattering circle radii may be varied by appropriately moving the 

radionuclide-detector frame to scan the object to be imaged. This can be achieved using a 

motion-controlled positioning system attached to the radionuclide-detector frame. 

 

4. Dicussion 
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In Compton Scattering Tomography, the local Compton Scattering cross-section depends on 

the material’s mass density and composition and is related to the local electron density of the 

material. In this work, images of a phantom were reconstructed by computing the electron 

density distribution data from a hypothetical object. In CST, the problem of attenuation is 

complicated and therefore, as a first approximation, uniform attenuation was assumed and the 

attenuation coefficient was assumed as not spatially dependent, but rather considered as 

dependent on energy in a known way (Hubbell et al., 1975). Norton, 1994 in his paper 

“Compton Scattering Tomography” considered a single scatterer before arriving at equation 2, 

and the approximate treatment of attenuation considered the case in which the weighting 

function was non-factorisable. A possible strategy for dealing with non-linear attenuation 

problem is to start with the assumption of a constant attenuation and then reconstruct the 

object function  
pa rf ,  incorporating the weighting function,  . The resulting 

reconstruction of  
pa rf ,  can then be substituted into the attenuation factor to give a new 

correction factor which can, in turn, be incorporated again into  and the process iterated 

until it “possibly” converges. This is a subject of future research on this topic. 

 

By varying the scattering circle radii from the developed image reconstruction computer code, 

different versions of the image were obtained. A close examination of these varying versions 

reveals a somewhat good image (judging by the revelation of a greater image detail) at 

ascattering circle radius of 10cm. Further investigation of this claim should be carried out 

practically when the real-life CST system is finally developed to authenticate the results 

obtained by this computer modeling. The practical implication of this should lead to the 

realization of optimal positioning of the source-detector frame for real-life object scans. 
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Appendix 

 

Code for Compton Scattering Imaging Implementation 

 

#include <iostream> 

#include <cmath> 

using namespace std; 

main() 

{ 

double pi, phi[20], theta, R, r0[20], mu[20], 

a[20],expa[20],Rexpa[20],h[20],d[20],b[20],f[20]; 

charcf, cphi; 

 

inti,j,k,thetap,x,y; 

pi = 1; 

 

for (i=0;i<=180;i+=10) 

// 

{theta=(pi)*i; 

phi[i] = (90) - theta; 

} 

// Define R (radius of scattering circle) 

j=1; 

for (y=1; y<=200;y++){ 

R=y/10; 

r0[j]=2*R*cos(theta - phi[y]); 

mu[j]=2/r0[j]; 

a[j]=(-mu[j]*r0[j]*(sin(80)-sin(10))/cos(80-phi[y])); 

expa[j]=exp(a[j]); 

Rexpa[j]=R*expa[j]; 

// Define h as a filter function 

h[j]=exp(sin(12.5/r0[j])*12.5/r0[j]); } 

for(k=2;k<=20;k++){ 

x=k-1;  

for (thetap=0;thetap<=180;thetap+=10) 

{d[x]=r0[1]*(cos(thetap-phi[x])/cos(80-phi[x]));} 

// 

b[x]=(r0[k] - d[x])*(1/pow(cos(10-phi[x]),2))*h[k]; 

} 

for(R=1;R<=15;R+=1){ 

cout<< "f[j]" << "                    "; cout<< "phi[j]" <<endl; 

for(j=1;j<=20;j++){ 

f[j]=R*Rexpa[j]*b[j];  

// 

cout<< f[j] << "              " <<phi[j] <<endl;  } 

} 

} 
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